A Purely Combinatorial Approach to Simultaneous Polynomial Recurrence modulo 1 Ernie Croot Neil Lyall
نویسنده
چکیده
Using purely combinatorial means we obtain results on simultaneous Diophantine approximation modulo 1 for systems of polynomials with real coefficients and no constant term.
منابع مشابه
A Purely Combinatorial Approach to Simultaneous Polynomial Recurrence modulo 1
Using purely combinatorial means we obtain results on simultaneous Diophantine approximation modulo 1 for systems of polynomials with real coefficients and no constant term.
متن کاملA Quantitative Result on Diophantine Approximation for Intersective Polynomials
In this short note, we closely follow the approach of Green and Tao to extend the best known bound for recurrence modulo 1 from squares to the largest possible class of polynomials. The paper concludes with a brief discussion of a consequence of this result for polynomial structures in sumsets and limitations of the method.
متن کاملSUMS OF THE FORM 1 / x k 1 + · · · + 1 / x kn MODULO A PRIME
Using a sum-product result due to Bourgain, Katz, and Tao, we show that for every 0 < 2 ≤ 1, and every integer k ≥ 1, there exists an integer N = N(2, k), such that for every prime p and every residue class a (mod p), there exist positive integers x1, ..., xN ≤ p satisfying a ≡ 1 x1 + · · ·+ 1 xN (mod p).
متن کاملReciprocal Power Sums Modulo a Prime
Using a sum-product result due to Bourgain, Katz, and Tao, we show that for every 0 < ǫ ≤ 1, and every power k ≥ 1, there exists an integer N = N(ǫ, k), such that for every prime p and every residue class a (mod p), there exist positive integers x1, ..., xN ≤ p ǫ satisfying a ≡ 1 x1 + · · · + 1 xN (mod p). This extends a result of I. Shparlinski [5].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013